The EU and UK have adopted ambitious targets for emissions reductions, part of an overall strategy aimed at achieving a comprehensive, legally binding and effective global agreement, through a combination of intensive diplomatic efforts with strong “leadership by example”. However, major global players, including crucially China and the USA, have been largely unmoved by the EU’s commitments. European policy-makers must therefore now come to terms with the reality of the failure of international negotiations, and the fact that EU leadership has proven much less effective than had been hoped. It is now time to develop a “Plan B” Climate Policy.

This paper therefore proposes high level changes in UK and EU policy, with the aim of developing a “Plan B” Climate Policy that would better reflect the new and potentially dangerous circumstances we find ourselves in. These “Plan B” changes fall into two categories: (1) continued efforts to promote mitigation, but with a focus on lowering the costs at global level; and (2) a range of measures aimed at preparation for a warmer world.
Policy Exchange is an independent think tank whose mission is to develop and promote new policy ideas which will foster a free society based on strong communities, personal freedom, limited government, national self-confidence and an enterprise culture. Registered charity no: 1096300.

Policy Exchange is committed to an evidence-based approach to policy development. We work in partnership with academics and other experts and commission major studies involving thorough empirical research of alternative policy outcomes. We believe that the policy experience of other countries offers important lessons for government in the UK. We also believe that government has much to learn from business and the voluntary sector.

Trustees
Contents

About the Authors 4
Acknowledgements 5
Executive Summary 6

1 Introduction 14
2 Plan B Mitigation Strategy: Investing to Lower Global Costs 19
3 Preparing for a Warmer World: Adaptation and “Backstops” 40
4 Conclusions and Recommendations 49
About the Authors

Dr Boaz Moselle is a Senior Managing Director of FTI Consulting, an economic and financial consulting firm. He is an economist specialised in energy markets, who has worked in academia, consulting and government. As a consultant he has provided advice to governments and corporations in many countries on a wide range of energy policy, competition and regulatory matters, including renewable generation, energy efficiency and security of supply. He was previously a Managing Director at the UK energy regulator Ofgem, where his responsibilities included security of supply, environmental policy, and the administration of the Renewables Obligation and other support mechanisms for renewable generation and energy efficiency. He has testified before UK parliamentary committees on renewable generation, security of supply, and the structure of the British power market.

He holds a PhD in economics from Harvard University, a PhD in mathematics from London University, and a BA in mathematics from Cambridge University.

Simon Moore joined Policy Exchange in August 2010 as a Research Fellow for the Environment and Energy Unit.

Before joining Policy Exchange Simon worked for London-based think tank The Stockholm Network. He has a Master’s degree in Public Policy from the University of Maryland and a Bachelor's degree in Politics from Lancaster University, where he was awarded the Oakeshott Prize for best overall performance in political theory and comparative politics.

Simon’s research interests include energy security and EU-Russia relations.
Acknowledgements

Thanks to Crosby MacDonald for excellent research assistance, to Simon Moore and Simon Less for their extensive and insightful input, and to Luis Agosti, Francesco Astolfi, Godfrey Boyle, Neil Hirst and various participants at the 2011 Cambridge EPRG Spring Seminar for their assistance on various points. All opinions and any errors herein are however entirely my own.
Executive Summary

Introduction
The United Kingdom and its European Union partners have spent the best part of two decades attempting to put in place a global agreement to reduce greenhouse gas (GHG) emissions, with a headline aim of limiting the increase in mean global temperature to no more than 2°C relative to pre-industrial levels.

Unfortunately, as of today these efforts have met with failure, and the prospects of success appear increasingly slender. The most recent predictions from the International Energy Agency (IEA) show that even if governments follow through with the unilateral commitments they made at the 2009 Copenhagen Climate Conference, the global temperature will still rise by 3.5°C in the long-term.

Implications for EU and UK policy
The EU and UK have adopted ambitious targets for emissions reductions, including at EU level a 20% reduction by 2020 compared with 1990 levels. These targets formed part of an overall strategy aimed at achieving a comprehensive, legally binding and effective global agreement, through a combination of intensive diplomatic efforts with strong “leadership by example”. At the time they were adopted there was a strong case for the EU to take a leadership role on climate change, given that no other major world player wished to take on such a role, and that the chances of success were perceived to be reasonably high.

However, major global players, including crucially the “G2” nations (China and the USA), have been largely unmoved by the EU’s commitments. European policy-makers must therefore now come to terms with the reality of the failure of international negotiations,
and the fact that EU leadership has proven much less effective than had been hoped. It is now time to develop a “Plan B” climate policy on the basis that:

1. “Leading by example” through the adoption of ambitious GHG reduction targets has been largely ineffective, and its future effectiveness as a means of persuading others to act should not be overestimated.
2. There will be no comprehensive, ambitious global agreement in the short or probably even medium-term.
3. Scientific evidence suggests that limiting warming to 2°C is very unlikely to happen.

This paper therefore proposes some high level changes in UK and EU policy, with the aim of developing a Plan B climate policy that would better reflect the new and potentially dangerous circumstances we find ourselves in. These Plan B changes fall into two categories: (1) continued efforts to promote mitigation, but with a focus on lowering the costs at global level; and (2) a range of measures aimed at preparation for a warmer world.

1. Plan B mitigation strategy: investing to lower global costs

Despite the poor outlook for a short- or medium-term global solution, the EU should continue to promote mitigation at the global level, retaining its own 2020 emissions reduction target, and its high level of ambition on longer-term decarbonisation.

However, there are questions about the proposal currently under discussion at EU level, and supported by the UK government, to increase the 2020 target from 20% to 30%. It has a cost currently estimated at €33bn (£27bn)\(^1\) per year. Its impact on the global level of emissions would be minor (as of 2020 the difference would be roughly equivalent to two weeks of China’s CO\(_2\) emissions). Claims that it would...

1 All € conversions of US$ and Euros are quoted in 2010 £ values using PPP exchange rates.
have a significant influence on other global players are wishful thinking, particularly in light of the failure of previous EU attempts to influence the actions of other global players. In reality there is no reason to think that such an increase would have a material impact on the behaviour of other major players, or give the EU added leverage in international negotiations. At best it will be viewed as an irrelevance by the nations that we most wish to convince.

The adoption of a 30% emissions reduction target for 2020 is not fundamental to achieving global climate mitigation. If the EU’s 2020 package is reopened and the emissions target increased, then, as part of that, the EU 2020 renewable energy target should, for reasons laid out in this paper, be scrapped (or downgraded to an ambition), enabling greater emissions reduction at lower costs.

European policy-makers should instead focus on an alternative approach that, in the long run, is likely to prove more effective: promoting technological advances that will promote greater emissions reduction at global level, by lowering the costs of the most important technologies for global mitigation. A significant reduction in the cost of mitigation could do much to reduce opposition and induce meaningful action. Achieving such a reduction requires a much greater focus on innovation. For example, the IEA estimates that “achieving global energy and climate change ambitions ... will require a twofold to fivefold increase in public RD&D spending”.

This paper identifies two essential criteria for assessing low carbon investments in low carbon technologies that could lead to such cost reductions:

1. The level of investment in each technology should reflect that technology’s long-term global potential contribution to mitigation. Clearly the payoff to reducing costs is highest if we focus on the technologies that are likely to be most utilised in the future.
2. Investments should be designed to maximise long-term global cost reductions. In particular, this requires an appropriate balance between investments in RD&D and in deployment.
The paper illustrates the implications of these criteria for UK and EU policy with respect to three technologies: Carbon Capture and Storage (CCS), solar photovoltaic (PV) and offshore wind. The main findings are summarised below:

<table>
<thead>
<tr>
<th>Technology</th>
<th>Long-term global potential</th>
<th>Strategy to maximise long-term global cost reductions</th>
<th>Implications for current policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCS</td>
<td>Critical to achieving mitigation goals because of its potential application to both power generation and industrial processes, its impact on total costs (IEA estimates total 2050 mitigation costs to be 70% higher without CCS), and the fact that key countries such as China have very large coal reserves. However, demonstration at commercial scale is still needed.</td>
<td>Focus on RD&D in the form of demonstration projects at commercial scale.</td>
<td>The UK and EU should devote greater resources and political capital to CCS. Focus on short-term emissions and most particularly renewable energy targets prevents this from happening. The IEA estimates a global shortfall of RD&D investment in CCS at between $8bn and $17bn/year.</td>
</tr>
<tr>
<td>Solar PV</td>
<td>Long-term potential for truly massive global application, including in Middle East and north Africa. However, it is currently very costly. Future potential depends on the ability to achieve more acceptable levels of cost.</td>
<td>Further RD&D, and deployment in sunny places.</td>
<td>EU policy, in particular the 2020 renewable energy target, leads to excessive deployment of costly solar PV in inappropriate locations. The level of subsidy to deployment in the EU should be reduced, with increased funding for RD&D. There is no case for widespread deployment in the UK.</td>
</tr>
</tbody>
</table>
The proposed criteria would mean significant changes in EU renewable policy. Current UK and EU policies favour renewable energy over other means of emissions reduction to an extent that is not justified by objective economic analysis. Moreover, the rigid 2020 targets lead to an excessive emphasis on rapid deployment of technologies rather than promoting long term innovation. Many of the investments in renewable energy expected between now and 2020 involve expensive subsidies to immature or otherwise inappropriate technologies, which are not justified by commensurate returns in terms of either cost-effective emissions reductions in the present, or cost reductions in the future.

This focus on deployment risks diverting attention from the high value of RD&D and demonstration projects in promoting advances in low carbon technologies. The paper highlights the current policy bias towards massive deployment and “learning-by-doing”, as opposed to learning by RD&D.

Europe’s Plan B climate policy should therefore abandon the 2020 renewable energy target, and shift instead towards treating all low carbon energy sources on a more equal footing, via a technology-neutral support scheme (such as the EU ETS plus a long-term carbon

<table>
<thead>
<tr>
<th>Technology</th>
<th>Long-term global potential</th>
<th>Strategy to maximise long-term global cost reductions</th>
<th>Implications for current policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore wind</td>
<td>Much more limited global potential. Technical global potential is only 1% of solar PV's.</td>
<td>Currently costly, with potential for cost reductions unclear. UK policy focus on massive deployment reflects local factors (planning permission issues for onshore wind, regional politics).</td>
<td>UK support for offshore wind should be downsized substantially. Installing an equivalent amount of onshore wind, while politically more challenging, would save approximately £15bn by 2020.</td>
</tr>
</tbody>
</table>

Much more limited global potential. Technical global potential is only 1% of solar PV’s.
price floor) that provides a reliable long-term price signal that supports investment. While there is still room for targeted support for individual technologies, there should be a much greater focus on RD&D. Support should be provided based on an evidence-based assessment process, applied on a neutral basis to the whole range of low carbon solutions. Technology-specific support for deployment would be much more limited.

Such an approach would significantly reduce overall costs. For example, simply reducing solar PV expansion to 2020 by two thirds (and replacing it with other low carbon generation) could save up to £15bn/year across the EU by 2020. That money could be better put to use in a number of different ways, including making renewable and other forms of low carbon generation more economical in the future through increased RD&D, and financing greater expenditure on adaptation.

2. Preparing for a warmer world: adaptation and “backstops”
In light of the current status of international negotiations, Plan B climate policy should address the potential consequences of warming significantly in excess of 2°C, including the risk of touching one or more “tipping points”, with potentially catastrophic impacts on human welfare. This has implications in two key areas: adaptation, and the development of one or more “backstop” options that may be needed in a worst case scenario of extreme and rapid warming.

Adaptation policy
The costs of adaptation would be high even in a 2°C scenario, and will be even greater in the new context. It is therefore essential to ensure a strong emphasis on the application of cost-benefit analysis. Such analyses should incorporate scenarios that recognise the probability of global temperature rises significantly greater than 2°C.
Global adaptation cost estimates currently range from $4 billion a year to well over $100 billion (approximately £3 billion – £65 billion), reflecting the poor knowledge base for policy-making. The effective application of cost-benefit analysis will require much greater knowledge and resources to assess the costs of adaptation.

Adaptation policy should also include some preparation, at least in the form of contingency planning, for worst case scenarios, including catastrophic outcomes. While society’s ability to adapt to very extreme warming is likely to be limited, there may be high value to such measures even if their impact is small relative to the degree of harm.

Backstops

In light of the increasing risk of serious or even catastrophic damage from global warming, policymakers should develop options for a number of “backstop” technologies that could be deployed at relatively short notice to prevent the worst effects of warming. The most promising of these “geo-engineering” techniques in the scientific literature appears to be the release of sulphate aerosols that would provide a cooling effect by reflecting sunlight back into space (an effect that has been noted in the past following volcanic eruptions).

The use of geo-engineering is not a good substitute for mitigation efforts, and carries major risks of unintended consequences. However, in light of the policy failures discussed in this paper, the UK and EU would be irresponsible not to undertake serious planning for scenarios where rapid emergency action is required in response to the arrival of low probability but high impact scenarios, and some form of geo-engineering may be the best measure available. While there are legitimate concerns that the development of a backstop technology will undermine the political will for mitigation, these are outweighed by the risks of not having a backstop, and by the reality that at global level the degree of political will is in any case unacceptably low.
The UK government should therefore play a leading role in funding an appropriate long-term research programme into geo-engineering. Research funding and the location of research should be as international as possible, and the funding should cover a broad portfolio of approaches. It should also take a lead in undertaking the groundwork for future institutions that would govern any such interventions, including assessment of relevant aspects of international law, the development of proposals for possible governance mechanisms, future funding and operational management. Finally, it is essential to foster public engagement on this issue.

This report confronts some uncomfortable evidence. “Leadership by example” of Europe’s target setting has not spurred wider action. Europe’s focus on rapid deployment has undermined efforts to develop the technologies to get the rest of the world to decarbonise. The world is heading towards potentially dangerous levels of climate change. However, ignoring these will not reduce the harm climate change will cause. Plan A for climate change policy is not working. It is Time for Plan B.
1. Introduction

The United Kingdom and its European Union partners have spent the best part of two decades attempting to put in place a global agreement that would dramatically reduce greenhouse gas (GHG) emissions, with a headline aim of limiting the increase in mean global temperature to no more than 2°C relative to pre-industrial levels. There is a broad consensus among EU policy makers that the benefits of such a policy massively outweigh its costs.

Unfortunately, as of today these efforts have failed, and the prospects of future success appear increasingly slender. The high point may have been the 1997 Kyoto Protocol, but even that involved commitments only from developed countries, and the failure of the US to ratify the agreement further limited its impact. Hopes of a significant successor agreement were dashed at the UN Climate Change Conference in Copenhagen in 2009. While the Cancun 2010 Climate Change Conference was generally viewed as a success, its main achievement was to keep in place the institutional framework for ongoing negotiations based on the individual commitments made at Copenhagen. It is increasingly clear that the outcome of those negotiations will be at most an agreement or set of commitments that is extremely limited relative to the UK/EU ambitions, and therefore has very little chance of restricting warming to 2°C even if signatories were to meet their commitments in full. While both China and the US made significant commitments to invest in energy efficiency and low carbon energy sources, those commitments — even if implemented — are small in comparison to what the EU had hoped to achieve.

Analysis undertaken by the International Energy Agency (IEA)
confirms that they fall well short of the level of effort consistent with 2°C warming.5

Recent projections suggest that limiting warming to 2°C would require global GHG emissions to remain relatively flat until 2020, falling thereafter to reach a level in 2050 that is 40% below 1990 levels.6 In light of the failure to reach a global agreement, however, a realistic assessment of the future path of global emissions likely involves much higher levels. The most recent predictions from the IEA show that:

- a continuation of “current” (i.e. pre-Copenhagen) policies would lead to stabilisation at a level consistent with expected warming of more than 6°C;7 and
- even if governments follow through with new policy measures to meet the commitments they made at Copenhagen (e.g. national pledges to reduce GHG emissions), emissions will follow a trajectory consistent with expected warming of 3.5°C.8

\textbf{Box 1: Future paths of CO$_2$ emissions}

Figure 1 below shows:

1. The estimated future path of emissions in a business-as-usual “Current Policies Scenario” (in dark orange). It corresponds to expected warming of approximately 6°C.9
2. The estimated future path of emissions if all countries fulfil the pledges made at the Copenhagen conference (the “New Policies Scenario”, in light orange).10 It corresponds to global expected warming of approximately 3.5°C.11
3. The estimated path of future global energy-related CO$_2$ emissions that would be consistent with limiting expected warming to 2°C (the “450 Scenario”, in grey).12
Implications for EU and UK policy

The long-term global deal that Europe hopes for would involve emissions reductions by developed countries of 80-95% by 2050.\(^\text{14}\) Analysis by the European Commission indicates that as part of such a deal the EU itself would have to reduce its domestic emissions by at least 70% (in addition to funding further reductions outside the EU through some form of international emissions trading).\(^\text{15}\) Current EU policy involves significant early unilateral action towards that goal, including a binding target of a 20% reduction by 2020.\(^\text{16}\) The stated rationale for the 2020 target is that the EU will have to achieve the 2050 target once global agreement is reached, and taking action now will make compliance less costly later.\(^\text{17}\)

The UK has set itself similarly stringent targets at national level, and put these targets on a statutory basis in the Climate Change Act (2008) which mandates emissions reductions of at least 80% by 2050. To this end, Parliament must set “carbon budgets” for each five-year period up to that point. The Committee on Climate Change

6 IEA (2010a) p. 388. The IEA’s scenario corresponds to stabilisation of greenhouse gases in the atmosphere at a level no higher than 450 parts per million of carbon dioxide equivalent (ppm CO\(_2\)e). The Intergovernmental Panel on Climate Change (IPCC) has estimated that stabilisation at between 445 ppm and 490 ppm will limit global average temperature increases to 2.0-2.4°C above pre-industrial levels (IPCC (2007), Climate Change 2007: Synthesis Report, p. 67, Table 5.1).
7 See Box 1
8 See Box 1
9 The IEA projects that a continuation of current policies will lead to a peak in atmospheric concentrations of GHGs at above 1000 ppm CO\(_2\)e and stabilisation at around 950 ppm CO\(_2\)e, and states that this is consistent with a temperature rise in excess of 6°C (IEA (2010a), pp. 383-384). Based on the IPCC’s latest assessment, stabilisation at between 855 and 1130 ppm CO\(_2\)e will lead to warming of 4.9-6.1°C above pre-industrial levels (IPCC (2007), p. 67).
10 The “Current Policies Scenario” developed by the IEA takes into consideration policies that had been formally adopted by mid-2010, based on IEA research into government policy development.
11 See Box 1
12 See Box 1
13 The long-term global deal that Europe hopes for would involve emissions reductions by developed countries of 80-95% by 2050. Analysis by the European Commission indicates that as part of such a deal the EU itself would have to reduce its domestic emissions by at least 70% (in addition to funding further reductions outside the EU through some form of international emissions trading). Current EU policy involves significant early unilateral action towards that goal, including a binding target of a 20% reduction by 2020. The stated rationale for the 2020 target is that the EU will have to achieve the 2050 target once global agreement is reached, and taking action now will make compliance less costly later.
14 The UK has set itself similarly stringent targets at national level, and put these targets on a statutory basis in the Climate Change Act (2008) which mandates emissions reductions of at least 80% by 2050. To this end, Parliament must set “carbon budgets” for each five-year period up to that point. The Committee on Climate Change
(CCC), tasked with advising on the level of these budgets, has recommended a legislated target of a 50% reduction by 2025, and the government has accepted that recommendation. These ambitious policies are best understood in the context of the overall goal they were developed to meet: achieving a comprehensive, legally binding and effective global agreement. Policy makers believed the EU could meet that goal through a combination of intensive diplomatic efforts with strong “leadership by example”, in the form of bold and aggressive measures to reduce emissions and move towards a more sustainable energy system.

That context certainly justified the ambitious GHG reduction targets adopted by the EU; the overall package of climate policies adopted in 2008, although it contains serious flaws, had a clear political logic and coherence. There was a strong case for the EU to take a leadership role on climate change, given that no other major world player wished to take on such a role, and that the chances of success were perceived by many to be reasonably high.

However these hopes have not been fulfilled, and major global players, including crucially the “G2 nations” (China and the USA), appear unmoved by the EU’s commitments. The EU’s offer to increase its 2020 emissions reduction target from 20% to 30% contingent on global agreement has not provided us with any additional leverage, as shown by events at Copenhagen and Cancun, where the EU was not a central player.

Policymakers must therefore now come to terms with the reality of the failures of Copenhagen and Cancun, and the fact that EU leadership has proven much less effective than we had hoped. We should reassess and redesign UK and EU climate policies, developing a “Plan B” climate policy on the basis that:

1. “Leading by example” through the adoption of ambitious GHG reduction targets has been largely ineffective, and its future effectiveness as a means of persuading others to act should not be overestimated.
2. There will be no comprehensive, ambitious global agreement in the short- or probably even medium-term.

3. Scientific evidence suggests that limiting warming to 2°C is very unlikely to happen.

This short paper therefore proposes some high level changes in UK and EU policy, with the aim of developing a Plan B climate policy that would better reflect the new and dangerous circumstances we find ourselves in. The Plan B changes fall into two categories: (1) continued efforts to promote mitigation, but with a focus on lowering the costs at global level; and (2) a range of measures aimed at preparation for a warmer world.
2. Plan B Mitigation Strategy: Investing to Lower Global Costs

Despite the poor outlook for a short- or medium-term global solution, the EU should continue to promote mitigation at the global level. While a “top-down” Kyoto-style global deal is unlikely, there are still potential benefits from pursuing the “bottom-up” approach that came out of Copenhagen and was formalised at Cancun. In that context the EU should stick to its own 2020 emissions reduction target, and maintain a high level of ambition on longer-term decarbonisation, albeit that the underlying rationale for the targets is now weaker.

However, there are questions about the proposal currently under discussion at EU level, and supported by the UK government, to increase the 2020 target from 20% to 30%.\(^{21}\) This increase has a cost currently estimated at €33bn per year, on top on the €48bn a year already required to meet the 20% target.\(^{22}\) The additional reduction in emissions would make little difference to emissions on a global scale (as of 2020 the difference would be roughly equivalent to two weeks of China’s CO\(_2\) emissions).\(^{23}\)

The most relevant question therefore concerns its strategic impact in the context of our continuing efforts to influence other global players. Proponents of an increase claim that it would represent “a real incentive for innovation and action in the international context ... stiffening the resolve of those already proposing ambitious action and encouraging more from those currently waiting in the wings”.\(^{24}\) However, this is pure wishful thinking. In reality there is no reason to think that such an increase would have a material impact on the behaviour of other major players, or give the EU added leverage in international negotiations – indeed prior to Copenhagen the

22 See the European Commission’s “Analysis of options to move beyond 20% greenhouse gas emission reductions and assessing the risk of carbon leakage”, May 2010. The EC concludes that the cost of meeting the 20% target has fallen to €48bn per year, while the cost of meeting a 30% target would be €81bn per year.
23 Total EU CO\(_2\) emissions from energy in 2020 are forecast to be 3,348 Mt, while China’s energy-related CO\(_2\) emissions were forecast to be 9,381 Mt. Reducing the EU’s forecast emissions by 10% (335 Mt) would therefore be equivalent to 3.6% of China’s total emissions, or approximately 13 days worth. (IEA (2010a), pp. 640 and 672)
European Commission took the opposite view, arguing that an additional 10% reduction was not a valuable bargaining chip that should be made conditional on other countries’ commitments. There is no evidence that the proposed unilateral 10% increase will have any impact on the behaviour of others. At best it will be viewed as an irrelevance by the nations that we most wish to convince.

The adoption of a 30% emissions reduction target for 2020 is not fundamental to achieving global climate mitigation. If the EU’s 2020 package is reopened and the emissions target increased, then, as part of that, the EU 2020 renewable energy target should, for the reasons laid out in this paper, be scrapped (or downgraded to an ambition), enabling greater emissions reduction at lower costs.²⁵

European policy makers should instead face the reality that our ability to directly influence other countries’ decisions on mitigation efforts is very limited. We should focus on an alternative approach that in the long run is likely to prove more effective in achieving influence, albeit less directly: promoting technological advances that will promote greater emissions reduction at global level, by lowering the costs of the most important technologies for global mitigation. It is clear that the cost of mitigation is the primary deterrent to action at present. A significant reduction in those costs could therefore do much to reduce opposition and induce meaningful action. It would also of course reduce the future costs we ourselves bear in decarbonisation.

What does the approach mean in practice? It involves designing a portfolio of investments in low carbon technologies, based on two fundamental principles:

1. The level of investment in each technology should reflect that technology’s long-term global potential contribution to mitigation. Clearly, the payoff to reducing costs is highest if we focus on the technologies that are likely to be most utilised in the future.

²⁵ In line with the recommendations in Moore (2011).
2. Investments should be designed to **maximise long-term global cost reductions**. In particular, and as discussed below, this requires an appropriate balance between investments in RD&D and in deployment.

Below I discuss these two principles in greater detail, and illustrate their application to three specific technologies: CCS, solar power, and offshore wind. Finally I draw out their implications for current EU policy, in particular the 2020 renewable energy target.

1. Long-term global potential

The long-term potential of any given energy technology to contribute to global mitigation efforts depends on a number of factors, including its “technical potential” (i.e., maximum feasible deployment of the technology, ignoring economic, social and political constraints) and its expected long-run cost. From a technical perspective, the potential for deployment at global scale varies significantly by technology. For example, solar energy has the technical potential for truly massive global deployment. The combined global technical potential for solar photovoltaic (PV) and concentrated solar power (CSP) is estimated at close to 750,000 TWh per year,\(^{26}\) about 25 times 2030 projected worldwide electricity demand of 30,300 TWh.\(^{27}\) By contrast, the estimated technical potential of wave and tidal power generation is relatively limited: their combined maximum contribution, ignoring cost and other non-technical constraints, is about 1% of global energy needs.\(^{28}\) In practice output would only ever be a small fraction of this. That in turn means that all else being equal, the potential returns to investment are higher for solar power than for wave or tidal generation.

Long run cost is a second consideration. In the long run, other countries are generally unlikely to invest heavily in the deployment of extremely costly technologies. We should therefore focus our

Figure 2: Estimated cost of low carbon technologies (2011, 2020, 2030, 2040)
investments on technologies that we believe are likely to become relatively competitive. To illustrate the point, Figure 2 shows recent estimates produced for the UK Climate Change Committee of the costs for a range of low carbon technologies at present and at various future dates. It indicates clearly that for some technologies – most notably wave power – the potential for long-term cost reductions is limited, in the sense that they are likely to remain expensive well into the future. All else being equal, this clearly calls for less investment in wave power.

Other considerations are also relevant, depending on the specific technology. For example, issues of public acceptance and concerns about proliferation are central to nuclear power’s long run potential. Careful assessment of the long run potential of each technology is therefore required. Of course there will inevitably be uncertainty around these assessments, and the uncertainty that is inherent in predicting future outcomes implies the need to invest in a portfolio of options. Within that portfolio however, it is clearly right, all else being equal, to invest more in those options with the best expected long run global potential.

2. Investing for long-term global cost reductions
UK and EU policies are heavily focused on deployment of renewable technologies so as to meet relatively short-term goals, notably the 2020 target of 20% of energy coming from renewables. By definition, a policy based on short-term targets will be heavily weighted towards deployment. In contrast, a policy aimed at maximising long-term cost reductions (with the aim of maximising long-term global penetration of low carbon technologies) requires a much greater emphasis on promoting innovation, and therefore requires a much more careful assessment of the balance between RD&D and deployment.

Both RD&D and deployment can contribute towards cost reductions. RD&D does so directly, deployment through so-called
“learning-by-doing”. This concept refers to the tendency for unit production costs to fall as a result of experience gained in producing increasing quantities. Learning-by-doing is widely cited as a key justification for providing greater subsidies to renewable generation deployment than to other forms of low carbon generation.³⁰

Box 2: “Learning-by-doing” vs “learning-by-research”

The concept of “learning-by-doing” was first introduced by Nobel Laureate economist Kenneth Arrow.³¹ Learning-by-doing effects have been identified in many contexts. However, it is often difficult to separate out the cost-reducing effect of increased production from the cost-reducing effect of RD&D, since typically both will occur over the same time period. Cambridge economists Jamasb and Koehler have used statistical methods to estimate the relative contributions of learning-by-doing and R&D (“learning-by-research”) to cost reductions experienced with a range of energy technologies. Some of their analysis is summarised in Table 1 below, which shows two different estimates of the so-called “learning rate”. The learning rate is defined as the reduction in unit costs associated with a doubling of the stock of output; it therefore measures the extent of learning-by-doing. The authors estimated learning rates in two ways: the first assumes that all cost reductions are due to learning-by-doing, the second attempts to take into account also the cost-impact of investments in R&D.³²

The second rate is therefore in principle a measure of the amount of cost reduction experienced during a doubling of output that is due to that doubling of output (rather than to R&D that would have lowered costs anyway). The greater the difference between the two figures, the greater the relative value of conducting R&D compared with deployment.
The appropriate balance between RD&D and deployment will vary by technology, and that balance will shift towards deployment as the technology matures. The data shown in Table 1 suggest that for less mature generation technologies RD&D plays a more important role than deployment, exemplified by solar thermal power and offshore wind. The estimates in Table 1 must therefore be interpreted in light of the degree of maturity of each technology during the time period covered by the data set. For example, the estimates for offshore wind are based on a data set that covers the period 1994–2001, when offshore wind was at an early stage of development. It would be entirely wrong to extrapolate from these figures to estimate the likely future levels of learning-by-doing in offshore wind, at an entirely different stage in the lifecycle of the technology when the potential for learning-by-doing is undoubtedly much greater. However, it would also be wrong to ignore the potential returns to further RD&D in offshore wind.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Learning rate (estimate 1)</th>
<th>Learning rate (estimate 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulverised fuel supercritical coal</td>
<td>4.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Coal conventional technology</td>
<td>15.1%</td>
<td>13.4%</td>
</tr>
<tr>
<td>Lignite conventional technology</td>
<td>7.8%</td>
<td>5.7%</td>
</tr>
<tr>
<td>Combined cycle gas turbines (1980-89)</td>
<td>2.8%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Combined cycle gas turbines (1990-98)</td>
<td>3.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Large hydro</td>
<td>2.9%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Combined heat and power</td>
<td>2.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Small hydro</td>
<td>2.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Waste to electricity</td>
<td>57.9%</td>
<td>41.5%</td>
</tr>
<tr>
<td>Nuclear light water reactor</td>
<td>53.2%</td>
<td>37.6%</td>
</tr>
<tr>
<td>Wind – onshore</td>
<td>15.7%</td>
<td>13.1%</td>
</tr>
<tr>
<td>Solar thermal power</td>
<td>22.5%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Wind – offshore</td>
<td>8.3%</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Table 1: Estimated learning rates for different generating technologies

33 Jamasb and Köhler (2007)
The strong emphasis in current UK and EU policies on rapid large-scale deployment of renewables is therefore likely to entail an excessive focus on learning-by-doing rather than RD&D, and as a corollary, on technologies that are deployment-ready (albeit expensive) rather than on less mature ones. Such a conclusion is consistent with evidence of continued under-investment in RD&D at global level for all low carbon technologies (with the possible exception of nuclear), as per a recent IEA assessment reproduced in Table 2 below. The IEA estimates that “achieving global energy and climate change ambitions ... will require a twofold to fivefold increase in public RD&D spending”.

| Table 2: Estimated public-sector low carbon energy technology current spending, needs and gap to achieve a 50% reduction in energy-related CO₂ emissions by by 2050 ($ millions)³⁵ |
|---------------------------------|-----------------|-----------------|-----------------|
| | Annual investment in RD&D required | Current annual RD&D spending | Estimated annual RD&D spending gap |
| Advanced vehicles (includes EVs, PHEVs + FCVs; energy efficiency in transport) | 22,500 – 45,000 | 1,860 | 20,640 – 43,140 |
| Bioenergy (biomass combustion and biofuels) | 1,500 – 3,000 | 740 | 760 – 2,260 |
| CCS (power generation, industry, fuel transformation) | 9,000 – 18,000 | 540 | 8,460 – 17,460 |
| Energy efficiency (industry) (IGCC + USCSC) | 5,000 – 10,000 | 530 | 4,470 – 9,470 |
| Higher-efficiency coal | 1,300 – 2,600 | 850 | 450 – 1,750 |
| Nuclear fission | 1,500 – 3,000 | 4,030 | 0 |
| Smart grids | 5,600 – 11,200 | 530 | 5,070 – 10,670 |
| Solar energy (PV + CSP + solar heating) | 1,800 – 3,600 | 680 | 1,120 – 2,920 |
| Wind energy | 1,800 – 3,600 | 240 | 1,560 – 3,360 |
| **Total across technologies** | **50,000 – 100,000** | **10,000** | **40,000 – 90,000** |

³⁴ IEA (2010b), *Global Gaps in Clean Energy RD&D: Update, 2010*, p.14. In the same report the IEA notes that “while IEA member countries and other major economies have made a collective commitment to double RD&D spending for LCETs, this is insufficient to achieve global energy goals” (p.9).

³⁵ IEA (2010c), *Energy Technology Perspectives*, p. 480. The spending required corresponds to the IEA’s BLUE Map scenario, which includes a goal of halving global energy-related CO₂ emissions by 2050 (compared to 2005 levels) and examines the least-cost means of achieving that goal.
Finally, current UK and EU policies also make no distinction between “local” and “global” cost reductions. For example, massive deployment of offshore wind turbines on the UK Continental Shelf (UKCS) would undoubtedly lead over time to some cost reductions. However, at least part of the learning-by-doing would involve learning about how to install offshore wind on the UKCS, for example in terms of supply chain optimisation in the UK and integration into the UK power grid. This learning would only be partially transferable to other locations, and would therefore only have limited impact on reducing costs for offshore wind outside of the UK (see also page 33).

Implications for CCS, solar power and offshore wind
The application of these two criteria would have significant practical implications for UK and EU investments in a range of low carbon technologies, as the following examples illustrate.

Example 1: Carbon Capture and Storage
The UK has announced its intention to provide public support for four CCS demonstration plants. The first of these projects, to be selected via a procurement process that has been underway since 2007, will receive up to £1 billion of capital funding. The Department of Energy and Climate Change’s (DECC) stated aim is for that plant to be constructed by 2014/15. The remaining three will be open to gas as well as coal power plants.

The UK programme fits into an overall EU support policy for CCS that is based around the promotion of up to 12 commercial scale demonstration projects, involving a projected €10.5-€16.5 billion (£7.6-£11 billion) of investment over the next 10 years. The EU has set aside 300 million EU ETS credits (current value of about €5 billion (£4 billion)), to be available up to 2015, to support the development of CCS and innovative renewable energy projects.

36 Committee on Climate Change, 4th Carbon Budget. The CCC’s 4th Carbon Budget, which was recently adopted by the government, envisions that four demonstration plants will be in operation by 2020.

37 The outcome of the competition will be announced later in 2011. Funding has been awarded to E.ON and Scottish Power for Front End Engineering and Design (FEED) studies, to be completed by spring 2011. (http://www.decc.gov.uk/en/content/cms/what_we_do/uk_supply/energy_mix/ccs/demo_prog/demo_1/demo_1.aspx)

39 EU Directive 2009/29/EC.
1. Long-term global potential

CCS technologies have the potential for massive application at global scale. CCS could be applied to mitigate emissions from coal- and gas-fired generation anywhere in the world. In addition, and of potentially great significance, CCS may also be applicable to key industrial processes such as cement production and petroleum refining that currently are themselves major sources of CO₂ emissions (representing respectively 4% and 3% of global stationary emissions). Finally, CCS might also be used to combine power generation with carbon sequestration ("negative emissions generation"), through application to biomass-fired generation.

Moreover, CCS plays an essential role in most plausible scenarios of successful mitigation, for two reasons. The first is its impact on cost: the IEA estimates that without CCS the overall cost of reducing emissions to 2005 levels by 2050 increase by 70%. The second is that, without CCS, any scenario of significant long-term global emissions reduction involves a somewhat implausible assumption that China, India, the US and others leave unexploited their hugely abundant reserves of coal and other fossil fuels. Even countries such as Norway or the UK, that in principle are strongly committed to combating climate change, remain simultaneously committed to full exploitation of their fossil fuel reserves: for example, the goals of the DECC include both combating climate change and “ensuring the recovery of all economic hydrocarbon reserves”.

CCS is therefore clearly a critical technology technically, economically and politically. In technical terms, it provides the only route to mitigating emissions from major industrial processes (for example, there is no “renewable concrete”). In economic terms, it

40 Intergovernmental Panel on Climate Change (2005), Special Report on Carbon Capture and Storage (IPCC SRCCS), Technical Summary, pp. 22-23, 2005.
41 IEA (2009), Technology Roadmap: Carbon capture and storage, p.4.
42 DECC, Guidance on Disputes over Third Party Access to Upstream Oil and Gas Infrastructure, April 2009, para 31: “[T]he Department’s main objective in operating its petroleum legislation is to ensure the recovery of all economic hydrocarbon reserves”.
could massively reduce the cost of mitigation. In political terms, it may be the only solution to the enormous economic disincentive that major owners of fossil fuel reserves currently face in reducing emissions. It is therefore not surprising that for example under the IEA BLUE Map scenario, CCS is the second largest means of emissions reductions to 2050, providing 19% of reductions, relative to the Baseline Scenario, while renewables provide just 17%.43

2. Long-term global cost reductions
At the current level of maturity it is uncontroversial that the appropriate investments will be in RD&D. Moreover, the scope of those investments should reflect the wide range of potential CCS applications discussed above (both fossil and bio-fuel fired generation, other industrial processes). The IEA Technology Roadmap for CCS has identified RD&D priorities for capture, transport and storage.44

CCS: conclusions
The UK and other member state governments should devote greater resources and political will to the development of CCS. The size of that commitment should reflect the current shortfall in RD&D investment, which the IEA estimates at between $8 billion and $17 billion per year globally. CCS is a potentially critical technology for global mitigation efforts, and merits a correspondingly high level of attention. The focus on short-term targets for emissions reduction and renewable energy is one cause of the significant under-investment in this set of technologies.

Example 2: Solar Power
The EU is spending massively on subsidises to solar power deployment, primarily solar PV.45 In Spain alone, solar power subsidies totalled approximately €1.9 billion (£1.5 billion) in 2009.46 In Germany it is estimated that the net burden of subsidies to solar PV capacity installed over the last decade will be €53 billion

43 The BLUE scenario involves halving energy-related CO₂ emissions by 2050, and is consistent with limiting warming to 2-3°C, conditional on deep cuts in other greenhouse gas emissions. IEA (2010c), p.69. The largest source of reductions is end-use fuel and electricity efficiency, at 38%. IEA (2010c), p.75.

44 IEA (2009)

45 The analysis here focuses on solar PV, although there is some read-over to CSP and some of the data (e.g. on technical potential) may cover both technologies. CSP is significantly cheaper than PV, with projected generating costs from 2010-2020 of £97/MWh to £204/MWh (IEA(2010a), p. 310), but remains an expensive mitigation option, with costs of approximately £134/tCO₂e to £423/tCO₂e (calculated according to the methodology described in footnote 51).

What do the two criteria laid out above imply for these very costly investments?

1. **Long-term global potential**

As noted earlier, solar power has the potential for truly massive scale, with technical potential equal to many times global energy consumption. One respectable source estimates that it would be technically and economically feasible to locate a set of very large-scale solar power facilities in coastal areas of the Middle East and North Africa with annual production almost twice that of the current EU installed power generation capacity. Locating similar facilities inland would allow for even larger output, in principle many times as high.\(^{48}\)

However, solar PV is currently an extremely costly way to generate electricity, with estimated generating costs in the region of £400/MWh.\(^{49}\) It is also a very costly means to reduce GHG emissions, particularly when installed in locations with relatively low levels of sunshine. The incremental costs of emissions avoided by replacing CCGT with solar PV\(^ {50}\) are on the order of £600/tCO\(_2\)e to £950/tCO\(_2\)e, many times higher than other available approaches such as onshore wind (approximately £98/tCO\(_2\)e) or nuclear (approximately £30/tCO\(_2\)e).\(^ {51}\)

The costs of solar PV have fallen dramatically since the 1970s. A number of studies estimate learning rates for solar PV in the last century at around 20\%.\(^ {52}\) It is generally believed that further significant reductions are possible over time, through improvements in thin-film technology as well as supply chain optimisation and better grid integration.\(^ {53}\) The IEA projects generating costs for large-scale solar PV to fall by around 50\% between 2010 and 2035 (with a projected learning rate of 17\%), its largest projected reduction in costs of any renewable technology.\(^ {54}\) However, even at half its current cost solar PV
would still be one of the most expensive means of GHG abatement available, especially given that other technologies can also be expected to enjoy significant cost reductions over the same time period.

The long-term global potential for solar PV is therefore rather uncertain. Very large future cost reductions might transform it into a critical technology for power generation. If cost reductions of that order are not feasible then – despite current enthusiasm – it may remain a small part of the overall energy mix.

2. Long-term global cost reductions

Given the potentially important role of solar PV as a major global technology, there is a strong case for significant public support. As with other technologies, it is then necessary to identify the appropriate balance between investing in RD&D and in deployment.

Proponents of large-scale deployment of solar PV focus heavily on subsidies to deployment to create “market-pull”, inducing major cost reductions through learning-by-doing as discussed above. That view is reflected in UK and EU policies, built around the 2020 renewable energy target and the very large subsidies described above.

It is by no means clear however that this policy bias in favour of deployment is optimal. First, as discussed earlier, it is necessary to distinguish between cost reductions that apply at a global scale and those that are more “local”. In the case of solar PV, the distinction is between reductions in the costs of manufacturing PV modules, which is a global industry, and reductions in other costs, which are largely local (e.g., the costs of installation, marketing, and grid integration).

By definition, cost reductions that are local in nature will not reduce the costs of installing solar PV in other parts of the world.

Second, there is evidence that factors other than learning-by-doing may be responsible for a large part of the cost reductions in solar PV that have occurred over time. One study concludes that “[o]verall, the “learning” and “experience” aspects of cumulative production do not appear to have been major factors in enabling firms to reduce cost per tonne of CO\textsubscript{2}e avoided is based on the incremental cost of generation over CCGT (as per IEA(2010d)), and the IEA’s emission factor for natural gas combustion of 370g/kWh (IEA (2010e), \textit{CO} \textsubscript{2} Emissions from Fuel Combustion, Highlights, 2010 Edition, p. 37). As a simple calculation, if a low carbon energy source replaces CCGT, it will take approximately 2.70 MWh (1/0.37) to save one tonne of emissions. Note that this calculation does not consider manufacturing or construction emissions. The actual cost per tonne of CO\textsubscript{2}e will vary between countries depending on actual generating costs and the type of generation displaced, but in general it is acknowledged that solar PV has a cost per unit of emissions that is an order of magnitude greater than other technologies.

54 International Energy Agency (2010a), p. 310. For CSP, costs are expected to fall by around 25%, with a projected learning rate of 10%.

the cost of PV”.57 Findings of this nature suggest that, at least at the margin, the returns to investing in RD&D (“learning-by-research”) could be higher than the returns to investing in massive deployment (“learning-by-doing”).

There are also additional considerations that do not apply to offshore wind. First, the UK and most of the EU are not well suited to installing solar PV, because of the relatively low levels of sunshine (as illustrated in Table 3), making the investments themselves much more costly in terms of expenditure per unit of output or per unit of avoided carbon emissions.

Second, it appears that for a variety of reasons other countries are likely to invest heavily in solar PV deployment. If the latest government policy pledges are enacted, China is expected to add 75 GW of solar PV capacity and 17 GW of CSP before 2035, and the United States is expected to add 57 GW of PV and 11 GW of CSP over the same period.59 There is therefore a real question as

Table 3: Solar radiation received58

<table>
<thead>
<tr>
<th>City</th>
<th>Average sunshine received, per m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>London</td>
<td>109</td>
</tr>
<tr>
<td>Munich</td>
<td>124</td>
</tr>
<tr>
<td>Paris</td>
<td>125</td>
</tr>
<tr>
<td>New York</td>
<td>147</td>
</tr>
<tr>
<td>Madrid</td>
<td>177</td>
</tr>
<tr>
<td>Rome</td>
<td>176</td>
</tr>
<tr>
<td>Athens</td>
<td>190</td>
</tr>
<tr>
<td>San Francisco</td>
<td>204</td>
</tr>
<tr>
<td>Accra</td>
<td>217</td>
</tr>
<tr>
<td>Rabat</td>
<td>217</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>225</td>
</tr>
<tr>
<td>Nairobi</td>
<td>234</td>
</tr>
<tr>
<td>Cairo</td>
<td>237</td>
</tr>
<tr>
<td>Al Khurtum (Sudan)</td>
<td>263</td>
</tr>
</tbody>
</table>

56 These are sometimes referred to as “balance-of-system” costs. See van Benthem A et al (2008), pp. 131–51.

59 IEA (2010a) p. 632 and 672.
to the marginal impact of the “learning-by-doing” induced by EU deployment.

As noted earlier, the IEA has identified a very large gap in funding for RD&D in solar energy (PV, CSP and solar heating), of the order of $1bn-$3bn annually. RD&D priorities include improving efficiency for crystalline silicon PV technologies and automation of manufacturing.60

Solar power: conclusions

The case for investments to bring down the costs of solar PV is a strong one, because of the potential for large scale deployment at global level. However, current EU policy is inappropriate, involving an excessive emphasis on deployment of what remains a relatively immature technology in places to which it is not well-suited. Going forward the level of subsidy to solar PV deployment in the EU should be reduced very significantly. There is no case for solar PV deployment in the UK, except perhaps as a “hearts and minds” exercise (e.g. in the form of solar PV panels on schools) to help gain public acceptance of the costs involved in combating climate change. EU support for RD&D should increase, in line with IEA recommendations.

Example 3: Offshore Wind

The UK has massive ambitions for offshore wind. While there is not a specific offshore wind target, current policies envisage at least an additional 13 GW of offshore capacity by 2020, with significant further additions thereafter.61 The costs of this level of deployment would be commensurately high: at current capital costs of approximately £3m/MW, 13 GW of capacity would cost £39 billion.62 By comparison, a corresponding investment in onshore wind would cost about £24 billion, while an equivalent amount of gas-fired generation would cost about £8 billion.63

62 The UK Energy Research Centre (UKERC) notes that “industry consensus is that capital and energy costs are approximately £3.0m/MW and £150/MWh respectively”. Greenacre, Philip et al (2010) Great Expectations: The cost of offshore wind in UK waters, UK Energy Research Centre, p. ix. Another recent study assessed the capital costs for offshore wind at between £2.59m/MW and £3.63m/MW, with even higher costs for Round 3 (In 2008, the Crown Estate began its Round 3 leasing programme for up to 25 GW of new offshore windfarm sites by 2020. This builds on the combined 8 GW covered by Rounds 1 and 2. Round 3 sites have characteristics, such as deeper water, that are projected to raise costs compared to previous installations.) Mott MacDonald (2010), UK Electricity Generation Costs Update, Tables A.8 and A.9. All costs per MW are quoted in 2009 prices unless otherwise specified.
63 I assume that a corresponding investment would comprise 16.25 GW of onshore wind, calculated
1. Long-term global potential

The UK is particularly well-endowed with offshore wind sites, enjoying a long coastline and a significant area of seabed of suitable depth (generally thought to comprise 5m to 30m) and flatness. Even for the UK however, offshore wind’s potential contribution to the overall energy mix is relatively limited. The 13 GW discussed above would provide around 9% of UK electricity demand, corresponding to 2.2% of total energy consumption in 2020.

Compared to the UK however, the potential for rolling out offshore wind at global scale is much more limited. Globally, the technical potential for offshore wind power is only 6% of the potential for onshore wind power, and just 1% of the potential of solar PV. Viewed at global level, offshore wind appears to be a much less critical technology than either CCS or solar power.

2. Long-term global cost reductions

The potential for cost reduction in offshore wind is a matter of some controversy. In the late 1990s and early 2000s there was a general belief that costs would fall as rapidly as onshore wind costs were perceived to have fallen. However, in the past decade estimated costs increased dramatically, including a doubling of capital costs. The actual prospects for cost reduction appear rather uncertain. The recent Committee on Climate Change report on renewables sees the potential for significant reduction in offshore wind costs, with capital costs falling by 16% by 2020 and 43% by 2040 in its central scenario.

Offshore wind: conclusions

Offshore wind is a relatively costly form of emissions reduction, with uncertain prospects for cost reductions. In contrast to CCS or...
solar PV, it has much more limited potential as a major global technology.\

69 Current enthusiasm for offshore wind among UK policymakers reflects in part the cost optimism of earlier years, but is probably driven above all by the difficulties experienced over the last twenty-odd years with public opposition to onshore wind deployment.\

70 As noted above, installing an equivalent amount of additional onshore wind generation could save approximately £15 billion by 2020, while still meeting the EU renewable energy target. In effect therefore, government is spending £15 billion to avoid difficulties with planning permission. Given a limited budget for GHG abatement, that money would be better spent elsewhere. UK policy should therefore involve a substantial downsizing of the current level of offshore wind subsidy.

Implications for EU Renewable Energy Policy

Defenders of the EU’s renewable energy policy would argue that it is designed to meet the criteria laid out above, providing market-pull to bring down the costs of key renewable technologies through the promotion of large-scale renewable energy deployment. However, the reality is that existing policy is a blunt instrument that fails to respect those criteria in a number of key areas.

First, based on long-term global potential there is no logic for favouring renewable energy technologies per se over other low carbon technologies. The very ambitious 2020 renewables target undoubtedly biases investment in favour of renewables, to the detriment of other technologies such as CCS, whose long term global potential is higher than most if not all renewable technologies, as well as other low carbon alternatives. Forecasts of future generation costs indicate similar levels of cost reduction for a number of key nuclear, CCS and renewable technologies. For example, a 2010 study for the UK Department of Energy and Climate Change (DECC)
forecasted cost reductions between 2009 and 2023 of 26% for nuclear, 23% for coal IGCC with CCS, 25% for offshore wind and just 2% for onshore wind.\footnote{Mott MacDonald (2010). The dates 2009 and 2023 refer to project start years. Note that the 23% forecast cost reduction for coal IGCC with CCS occurs despite a forecast 26% increase for coal IGCC without CCS.}

Second, the level of support provided to individual renewable technologies is not designed to reflect their long-term global potential. Most member states provide support to a wide range of renewable technologies with little attention to the global implications of supporting one technology over another. The UK’s massive offshore wind programme is one clear example, driven primarily by purely local factors (problems with planning permission and regional politics, as well the geographic fundamentals of a small crowded island which lacks broad expanses of prairie or steppe).

Third, the policy over-emphasises deployment and “learning-by-doing”, contributing to the massive under-investment in RD&D identified by the IEA. While the 2020 target promotes massive deployment of costly renewable technologies, the IEA notes that “renewable energy technologies [as well as advanced vehicles and biofuels] have a particularly strong need for expanded basic science research to deliver the breakthroughs required to achieve long-term cost competitiveness goals.”\footnote{IEA (2010f), p.17.}

What of the other arguments commonly put forward to support the EU renewables target?

“Green industrial policy”
Proponents of a “green industrial policy” argue that the investments will create millions of new jobs, and it is certainly the case that there are now many people employed in renewable energy in the EU. In Germany alone, employment in the renewable energy sector was close to 280,000 in 2008.\footnote{O’Sullivan, Marlene et al (2009), Gross Employment from Renewable Energy in Germany in the Year 2008 – A first estimate, http://www.bmu.de/files/english/pdf/application/pdf/ee_bruttobeschaeftigung_08_en_bf.pdf.} However, economists generally believe that the overall level of employment in an economy reflects underlying economic fundamentals (levels of education and skills, availability and cost of childcare, minimum wage, payroll taxes and
other employment costs, etc). The likely effect of investing in deploying renewables is therefore not to change the overall level of employment, but to change the mix of jobs in the economy. There is no reason to think that this change would be a positive (or negative) one for those concerned. Moreover, the level of subsidy per job created in renewables has been very high (in Germany, one respected study estimates subsidies per worker as high as €175,000 (in 2009 terms, £125,000 in 2010 PPP terms)), and in the future it is likely that much of the large-scale employment in manufacturing renewable generation will be located outside of the EU, reflecting differential labour costs.74 The recent shift of solar PV manufacturing from Massachusetts to China by Evergreen Solar (a company that had received $43 million (£35m) in public support) illustrates the trend.75

Experience of previous attempts by government to identify and invest in “cutting edge” technologies has not been positive. Government investment decisions tend to be subject to excessive influence by their beneficiaries, and governments find it hard to recognise failure and cut off support for unsuccessful projects, a problematic tendency given that a high failure rate is inherent in the process of innovation.76

Security of supply

It is also argued that investing in renewable energy promotes energy security of supply. While this argument is not without merit, the benefit is typically over-estimated, especially relative to a counter-factual scenario that involves greater reliance on other low carbon energy sources. For power generation, the main security of supply concern relates to the EU’s growing dependence on pipeline-imported natural gas from a small number of politically unstable countries. However, the promotion of renewable power may well displace not those sources of gas, but other more secure sources, notably liquefied natural gas.

(LNG) imports. Moreover, the promotion of other low carbon sources of generation such as nuclear power or coal-fired generation with CCS would have an equal or greater impact on security of supply. Uranium and coal are both widely available from a diverse set of suppliers, including politically stable allies of Europe, while investments in energy efficiency would do even more to enhance energy security.\(^77\)

The security of supply argument may be stronger for transportation, but biofuels have major problems of their own, including notably their impact on food prices: one much cited paper from the World Bank identified the production of biofuels from food grains and oilseeds as the most important factor underlying the dramatic increase in global food prices earlier this decade.\(^78\) A better way to address reliance on imported oil may be to focus on affordable decarbonisation of the electric power system, and promote electric vehicles.

Conclusion

While renewable energy is an important and probably essential part of long-term climate mitigation, current UK and EU policies favour renewables over other means of emissions reduction to an extent that is not justified by objective economic analysis. Many of the investments in renewable energy expected between now and 2020 involve expensive subsidies to immature or otherwise inappropriate technologies, which are not justified by commensurate returns in terms of either cost-effective emissions reductions in the present, or cost reductions in the future. A high level of ambition is required to address climate change, but the ambition must be applied appropriately.

Europe’s Plan B climate policy should therefore abandon the 2020 renewable energy target, and shift instead towards treating all low carbon energy sources on a more equal footing, via a technology-neutral support scheme (such as a carbon price floor) that provides a reliable long-term price signal that supports investment. While there is still room for targeted support for individual technologies, there should be a much greater focus on RD&D. Support should be provided on the basis of an evidence-based assessment process, applied on a neutral basis to the whole range of low carbon solutions. Technology-specific support for deployment would be much more limited. 79

Such an approach would significantly reduce overall costs. For example, the European Commission estimates that its current policies will deliver over 80 TWh from solar generation by 2020. 80 Reducing projected additional deployment of solar PV by two-thirds and making equivalent investments in other low carbon sources of energy could produce EU-wide savings of up to £15 billion per year by 2020. 81 As noted earlier, replacing the UK’s offshore wind ambitions with equivalent amounts of onshore wind, while politically challenging, would save £15 billion in capital investments. 82 That money could be put to better use in a number of different ways, including making renewable and other forms of low carbon generation more economical in the future through increased RD&D, and financing greater expenditure on adaptation.

79 For example, Gillingham and Sweeney in Moselle et al (2010), pp. 69-92 find that the existence of learning-by-doing effects justifies subsidies for installing residential solar PV in California, but that the optimal programme would lead to about 200,000 installations in 2018 (at which point the programme should have ended). In contrast, California public policy had set a headline target of one million installations. California has a population of 37 million people, and is of course much sunnier than the UK and most of Europe (see Table 2 above).

81 Using the cost estimates shown in Figure 2 shows that replacing solar PV with nuclear power could save up to 27.5p/kWh, giving a saving of £14.9 billion on 54 TWh.

82 I.e. £15 billion in total, not per year.
3. Preparing for a Warmer World: Adaptation and “Backstops”

As argued in Chapter 2, the EU should continue to work towards a global agreement, but policy should no longer be predicated on an assumption that such an agreement will be reached, and policy makers should bear in mind that even the most optimistic scenario is very unlikely to achieve the reductions needed for a 2°C limit.

While the impacts of warming are inherently difficult to forecast, existing analysis suggests that adapting to rises above 2°C is a significantly different proposition from adapting to rises at or below 2°C (indeed 2°C was chosen as a target in part for that reason), as Figure 3 illustrates. \(^{83}\)

The higher expected warming that follows from the failure to achieve a comprehensive global international agreement brings with it significantly higher risk of extreme outcomes. These include the possibilities of warming beyond 4°C, and of touching one or more “tipping points”, with potentially catastrophic impacts on human welfare. One recent paper in the scientific literature notes that:

There are a range of other potential thresholds in the climate system and large ecosystems that might be crossed as the world warms from 2°C to 4°C and beyond. These include permanent absence of summer sea ice in the Arctic, loss of the large proportion of reef-building tropical corals, melting of permafrost at rates that result in positive feedbacks to greenhouse gas warming through CH\(_4\) and CO\(_2\) releases and die-back of the Amazon forest. While the locations of these thresholds are not precisely defined, it is clear that the risk of these transitions occurring is much larger at 4°C — and so the nature of the changes in climate we experience may well start shifting from incremental to transformative. \(^{84}\)

\(^{83}\) Economics of Climate Adaptation Working Group (2009), *Shaping climate-resilient development: a framework for decision-making*, http://www.mckinsey.com/App_Media/Images/Page_Images/Offices/SocialSector/PDF/EC_A_Shaping_Climate%20Resilient_Development.pdf. Note that more recent developments in the scientific literature suggest that the choice of a 2°C limit may be optimistic: “it is reasonable to assume, ceteris paribus, that 2°C now represents a threshold, not between acceptable and dangerous climate change, but between dangerous and ‘extremely dangerous’ climate change”. See Anderson, Kevin and Bows, Alice (2011) “Beyond ‘dangerous’ climate change: emission scenarios for a new world”, in *Phil. Trans. R. Soc. A* 369, pp. 20–44, and references therein.

Plan B climate policy should therefore address the potential consequences of warming significantly in excess of 2°C. This has implications in two key areas: adaptation, and the development of one or more “backstop” options that may be needed in a worst case scenario of extreme and rapid warming.

Some implications for adaptation policy
The costs of adaptation would be high even in a 2°C scenario, and will be even greater in the new context. It is therefore essential to
ensure a strong emphasis on the application of cost-benefit analysis. While it may be difficult to obtain accurate estimates of costs and benefits, a coherent approach to cost-benefit analysis will at the least allow some kind of ranking of measures, and also facilitate possible future trade-offs between spending on adaptation versus mitigation.

In principle the UK government has endorsed this approach, adopting as one of its “key adaptation principles” that “the long term benefits of adaptation actions should outweigh the costs”. Whether policy over the coming years and decades will in practice reflect this principle remains to be seen. At EU level, where the UK is already perceived as a leader in developing adaptation policy, it should work with the European Commission and others to ensure that the principle is adopted and implemented by other member states as an important element of Plan B climate change policy. It should also push other member states to ensure that cost-benefit analyses, and adaptation plans overall, are based on scenarios that recognise the probability of global temperature rises significantly greater than 2°C.

However, the effective application of cost-benefit analysis will require much greater knowledge and better techniques to perform such analysis. The current state of play is described in a recent Grantham Institute report which notes that “Global adaptation cost estimates [the annual cost of adapting to ‘median’ climate change over the next 20 years] range from $4 billion a year to well over $100 billion [approximately £3bn – £65bn] ... The wide range is symptomatic of the poor state of knowledge, with most estimates indicative and incomplete, but also of the analytical difficulty of defining adaptation. There is also a dearth of independent studies using different estimation techniques.”

There is therefore a strong case for devoting much greater resources to developing the necessary evidence base for cost-benefit assessment of adaptation measures. A related point is the need for
additional research to understand better both the probabilities associated with high impact catastrophic events, and the potential to develop “early warning” systems. Better understanding of the probability and impact of these events would feed into our understanding of the benefits of mitigation, and might in the long run affect the debate in key countries outside Europe. With regards to “early warning”, the long-term nature of climate change, arising from the cumulative emissions of greenhouse gases, means that the concept requires careful handling: notice of an impending catastrophic event is unlikely to be sufficiently “early” to allow for effective mitigation. However, a warning some decades ahead would allow for more effective adaptation (i.e. damage-limitation) measures, and might also make possible the application of a backstop as discussed below.

Finally, Plan B climate change adaptation policy should include some preparation, at least in the form of contingency planning, for worst case scenarios, including catastrophic outcomes. While society’s ability to adapt to very extreme warming is likely to be limited, there may be high value to such measures even if their impact is small relative to the degree of harm. The point is well made in a recent World Bank paper:

The more severe the losses, the more valuable even a modest reduction in their potential magnitude. By way of analogy, consider the pandemic flu of 1918 that killed somewhere between 20 and over 40 million people worldwide, with one estimate at 50 million (Niall et al. 2002), assuredly a catastrophe. Say that additional public health adaptation measures would have had the potential to cut deaths by “only” ten percent. That still would have been an amazing accomplishment, one worth bearing significant costs to attain.

The possibility of extreme outcomes should also be taken into account in making other risk-based decisions, for example in relation...
to GM technologies, where the risks associated with innovation may be balanced by the risks of inaction in a context of possible future global food shortages.

Backstops

As discussed above, the possible impacts of severe warming include the potential for one or more “tipping point” thresholds to be crossed, risking catastrophic outcomes. As a key element of planning for such outcomes, policymakers should develop options for a number of “backstop” technologies that could be deployed at relatively short notice to prevent the worst effects of warming (e.g. by keeping the climate system away from a “tipping point”). Such technologies, which involve large-scale manipulation of the global climate, are commonly referred to as “geo-engineering”. Numerous proposals have been made by scientists: a recent (2009) report by the Royal Society gives a clear overview as well as a very useful discussion of the policy issues.92

Following the Royal Society, geo-engineering techniques can usefully be classified into two groups:

1. Those that directly remove carbon dioxide from the atmosphere, for example through increased afforestation or “ocean fertilisation” (Carbon Dioxide Removal (CDR) techniques); and
2. Those that reduce the incidence or absorption of sunlight, and thereby offset global warming without attempting to affect greenhouse gas concentrations (Solar Radiation Management (SRM) techniques – see Box 3 for details). The approach that has received most attention would involve injecting sulphate aerosols (a very fine “mist” of particles) into the atmosphere. Large volcanic eruptions observed in the past provide natural experiments that have confirmed the effectiveness of this technique in temporarily lowering global temperature.

92 The Royal Society (2009), *Geoengineering the climate: Science, governance and uncertainty*. Much of the technical information in this section is taken from this report.
Box 3: Solar Radiation Management

SRM methods aim to make the earth more reflective to decrease the amount of “insolation”, i.e. absorption of solar radiation by the Earth. The goal is to balance the increased warming caused by greenhouse gas emissions with “negative forcing” relating to reduced solar energy absorption. This can be accomplished by altering the earth’s surface to make it more shiny (“increasing planetary albedo”), so that more sunlight is reflected back into space, or by otherwise diverting solar radiation from reaching the earth and being absorbed.

Specific SRM techniques include:

- **Surface albedo techniques**: making the Earth more reflective by making its surface brighter. Potential methods include increasing the reflectivity of the built environment by painting roofs, although this is unlikely to be very effective due to the small portion of the planet’s surface that is settled. Other methods include covering deserts with reflective material, planting reflective crops and grasslands, and reforestation;

- **Cloud-albedo enhancement**: whitening clouds over the ocean by spraying powder (e.g. sea salt) from aircraft;

- **Stratospheric aerosols**: releasing particles into the atmosphere to reflect sunlight back into space. A wide range of particles might be suitable, including sulphate aerosols, which have given rise to global cooling in the past when released during volcanic eruptions. According to The Royal Society, this appears to be the most promising SRM technique available; and

- **Space-based techniques**: positioning sun shields in space to reflect solar radiation (e.g. placing reflectors in low-earth orbit, or at a point further out in space). The early stage of R&D and high costs mean that these methods are unlikely to be feasible in the short- and medium-term.
For the purposes of developing backstop technologies, the focus should be on Solar Radiation Management techniques, because only they can be deployed at appropriate speed.94

Geo-engineering techniques, particularly those based on SRM, have obvious drawbacks. By definition the techniques could not be tested on a global scale until they were first applied. While SRM would reduce mean global temperatures, its effect would vary by location in ways that would not necessarily reflect the effects of climate change, and its effects on other factors such as precipitation patterns are hard to predict. It would not address the increase in ocean acidification arising from higher atmospheric CO\textsubscript{2} concentrations. Moreover, there are concerns about ongoing reliance on the application of advanced technology that might be disrupted for example by international conflict.

In an ideal world therefore, climate change concerns would be addressed primarily by reducing GHG emissions and implementing appropriate adaptation measures, possibly alongside some CDR techniques if justified in terms of cost and risk. However, in light of the policy failures already discussed in this paper, the UK and EU would be irresponsible not to undertake serious planning for scenarios where rapid “emergency action” is required in response to the arrival of low probability but high impact scenarios, and the

93 The Royal Society (2009).
94 The CDR techniques are better considered as forms of mitigation, and developed through the common policy framework described in section 1, beginning with further support for R&D along the lines proposed by the Royal Society, while bearing in mind concerns about potential environmental harm and unintended consequences (e.g. impact on marine life of ocean fertilisation, or increased food prices if large areas of agricultural land are devoted to CDR uses).
application of SRM techniques may be the best measure available. While there are legitimate concerns that the development of a backstop technology will undermine the political will for mitigation, these are outweighed by the risks of not having a backstop, and by the reality that at global level the degree of political will is, in any case, unacceptably low.

These considerations lead to three recommendations, primarily for the UK government:

1. **Fund an appropriate long-term research programme.** The UK should aim to play a leading role, but research funding and the location of research should be as international as possible. International coordination of research and shared research funding has obvious benefits in many areas, but in this case there is an added payoff that it will complement efforts in developing governance arrangements and in improving public acceptance, as discussed below. The research programme should follow the lines proposed by the Royal Society, including with regards to regulation, monitoring and transparency. While it makes sense to focus most funding on those approaches that appear most promising, the high level of uncertainty around this area implies that it will be optimal to develop a broad portfolio of approaches.

2. **Institution building.** The UK should also look to lead in undertaking the groundwork for future institutions that would govern any such interventions. This groundwork would include assessment of the complex set of issues in international law that arise (depending on the nature of the proposed intervention), the development of proposals for possible governance mechanisms (e.g. international treaties), future funding and operational management. Funding and operational management might be carried out at least in part through existing international bodies. At this stage the goal should be to clarify options and engage the international community in dialogue.
3. Public engagement. At present there is a “democratic deficit” in this area, with very limited public discussion of the issues. There is a very real danger that this could lead at some future point to a very negative public reaction that inhibits rational debate and decision-making, as has been seen in other areas such as nuclear power. Government should promote open discussion, focusing on the importance of research, and the principle that any intervention would be a “last resort”. We should also encourage other EU member states to take a similar approach.

These recommendations are focused on the UK government rather than the EU, in part because they play to some of the specific strengths of the UK, in relation to pure science, policy development and diplomacy. The UK can contribute best if it focuses on the comparative advantage it holds in those areas.
4. Conclusions and Recommendations

1. The UK and EU should continue to work towards a global agreement to address climate change concerns through a coordinated reduction in global GHG emissions, with the goal of limiting global warming to 2°C. However, policy should recognise that this is an unlikely outcome.

2. Future policy should recognise the EU’s relatively limited ability to influence the behaviour of other major global players, and in particular that efforts to “lead by example” have not proven successful.

3. The adoption of a 30% emissions reduction target for 2020 is not fundamental to achieving global climate mitigation. If the EU’s 2020 package is reopened and the emissions target increased, then, as part of that, the EU 2020 renewable energy target should be scrapped (or downgraded to an ambition), enabling greater emissions reduction at lower costs and – as laid out in this paper – the adoption of policies more likely to have real impact globally.\(^95\)

4. The UK and EU should instead focus on measures that are more likely to encourage greater mitigation efforts by others, in particular measures that support technological innovation that will make it less costly for others to reduce emissions in the future.

5. This requires (i) a focus on supporting technologies that are or will become affordable, and that can be deployed globally at scale; (ii) investing to bring down costs, which is often best achieved through a greater focus on Research, Development and Demonstration, rather than early large-scale deployment.\(^95\) In line with the recommendations in Moore (2011).
6. In practice this would lead to very significant changes, particularly in relation to the current focus on large-scale deployment of renewables.

7. In particular, it would involve scrapping the current renewable energy target, as Policy Exchange has previously recommended. Instead EU policy should be based on a support scheme that treats all low carbon sources on an equal footing, and provides support on the basis of objective analysis. The nature and extent of the support will then vary according to the results of that analysis. For example,
 a) Support for CCS would increase very significantly, reflecting the critical role those technologies can play in global mitigation.
 b) Support for solar PV would focus much more on RD&D and on deployment in sunnier locations (i.e. largely outside of the EU), since it is a technology that combines global scalability with very high current costs.
 c) In contrast, support for offshore wind would be significantly reduced, since that is a very costly technology with relatively limited global application.

8. As a complement to effective mitigation policies, the UK and EU need a coherent long-term policy framework for adaptation that incorporates:
 a) Realistic assessments of the consequences of global warming, taking into account a range of likely outcomes including ones that involve levels of warming significantly higher than 2°C.
 b) Robust assessments of the costs and benefits of alternative adaptation measures.

9. Much more research is required into the costs and benefits of adaptation.

10. Adaptation policy should include some preparation for worst case scenarios, including so-called “catastrophic outcomes”.

11. In light of the increasing importance of “low probability, high impact” scenarios involving particularly grave damage from
global warming, policymakers should develop options for a number of “backstop” technologies (“geo-engineering” techniques) that could be deployed at relatively short notice to prevent the worst effects of warming. Government should therefore:

b) Aim to play a leading role in funding an appropriate long-term research programme, along the lines recently recommended by the Royal Society. Research funding and the location of research should be as international as possible. The funding should cover a broad portfolio of approaches.

c) Lead in undertaking the groundwork for future institutions that would govern any such interventions, including assessment of relevant aspects of international law, the development of proposals for possible governance mechanisms, future funding and operational management.

d) Actively foster public engagement. The UK and other EU member state governments should promote open discussion, focusing on the importance of research, and the fact that any intervention would be a “last resort”.

Conclusions and Recommendations
The EU and UK have adopted ambitious targets for emissions reductions, part of an overall strategy aimed at achieving a comprehensive, legally binding and effective global agreement, through a combination of intensive diplomatic efforts with strong “leadership by example”. However, major global players, including crucially China and the USA, have been largely unmoved by the EU’s commitments. European policy-makers must therefore now come to terms with the reality of the failure of international negotiations, and the fact that EU leadership has proven much less effective than had been hoped. It is now time to develop a “Plan B” Climate Policy.

This paper therefore proposes high level changes in UK and EU policy, with the aim of developing a “Plan B” Climate Policy that would better reflect the new and potentially dangerous circumstances we find ourselves in. These “Plan B” changes fall into two categories: (1) continued efforts to promote mitigation, but with a focus on lowering the costs at global level; and (2) a range of measures aimed at preparation for a warmer world.